Consequences of Metal-Oxide Interconversion for C-H Bond Activation during CH₄ Reactions on Pd Catalysts Ya-Huei (Cathy) Chin,^{†,§} Corneliu Buda,[‡] Matthew Neurock,*^{,‡} and Enrique Iglesia*,[†] Supporting Information ABSTRACT: Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH₄ react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to Habstraction and then to σ -bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O^*-O^*) pairs and ultimately to Pd cation-lattice oxygen pairs $(Pd^{2+}-O^{2-})$ in PdO. The charges in the CH₃ and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd²⁺-O²⁻ pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H₃C···Pd···H)[‡] transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH₃ species and nearly formed O-H bonds at a transition state $(O^* \cdots CH_3^* \cdots *OH)^{\ddagger}$ that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd^{2+} and vicinal O^{2-} , $Pd_{ox}-O_{ox}$, cleave C-H bonds heterolytically via σ -bond metathesis, with Pd^{2+} adding to the C-H bond, while O^{2-} abstracts the H-atom to form a four-center $(H_3C^{\delta-}\cdots Pd_{ox}\cdots H^{\delta+}\cdots O_{ox})^{\ddagger}$ transition state without detectable Pdox reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH₄ oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory and experiment, resemble those prevalent on organometallic complexes. Metal centers present on surfaces as well as in homogeneous complexes act as both nucleophile and electrophile in oxidative additions, ligands (e.g., O* on surfaces) abstract H-atoms via reductive deprotonation of C-H bonds, and metal-ligand pairs, with the pair as electrophile and the metal as nucleophile, mediate σ -bond metathesis pathways. # 1. INTRODUCTION Phase transitions among metals and their oxides, sulfides, or carbides occur as the respective chemical potentials of oxygen, sulfur, or carbon vary with temperature and with the concentrations of the reactant and product molecules that contain these heteroatoms. These phase transitions lead to significant catalytic consequences, as shown for CH₄ oxidation, ¹ hydrodesulfurization,^{2,3} and Fischer-Tropsch synthesis⁴ catalysis. Specifically Pd-PdO transitions during catalytic CH₄-O₂ reactions have shown how turnover rates can increase abruptly as Pd clusters undergo bulk oxidation with increasing O2/CH4 ratio or decreasing temperature;⁵ these interconversions lead to hysteresis in CH₄ oxidation rates with changes in temperature and oxygen chemical potential.^{6,7} Such hysteresis behavior prevents unequivocal connections between the observed catalytic behavior and the thermodynamics of Pd-PdO transitions as well as rigorous interpretations of the effects of cluster size on the relative reactivity and stability of the metal and oxide phases. The fact that oxygen chemical potentials at surfaces reflect the kinetic coupling of the steps that remove chemisorbed oxygens (O*) and form them via O2 dissociation (and not just the thermodynamics of the latter step), and the ubiquitous effects of temperature and concentration gradients for such fast exothermic reactions have made rigorous interpretations of these catalytic consequences of phase transitions a formidable and still largely unresolved challenge. In our studies, we have removed transport artifacts by extensive dilution and established the reversible nature of Pd-PdO interconversions during CH₄-O₂ catalysis, thus ensuring the chemical origins of measured turnover rates and the thermodynamic nature of the phase transitions. These data, taken together with isotopic experiments and density functional theory (DFT) calculations, have led to rigorous mechanistic interpretations of CH₄-O₂ reactions on the surfaces of PdO and Pd metal clusters sparsely covered or saturated with Received: May 18, 2013 Published: October 1, 2013 [†]Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States [‡]Departments of Chemical Engineering and Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, MSS 3E5, Canada Figure 1. DFT-optimized models of (a) Pd(111), (b) 0.67 ML O*-covered Pd(111), (c) PdO(100), and (d) PdO(101) single crystal surfaces used to examine the activation of methane. The Pd atoms and O atoms are shown in blue and red, respectively. Pd–Pd site pair (in 1a), Pd–O* and O*-O* site-pairs (in 1b), nonstoichiometric Pd_{ox}-O_{ox} site-pair (labeled Pd¹_{ox,1}-O¹_{ox} in 1c), and stoichiometric Pd_{ox}-O_{ox} (labeled Pd²_{ox,1}-O¹_{ox} Pd¹_{ox,1}-O²_{ox} in 1d) and O_{ox}-O_{ox} site pairs (and O¹_{ox}-O¹_{ox} in 1d) are boxed in green. The sites involving O²_{ox} are not considered as the four-coordinate O²_{ox} centers are inaccessible. The yellow lines in each model define the unit cell used in DFT calculations. chemisorbed O*. These insights build on earlier proposals for the sequence of elementary steps that mediate CH_4-O_2 catalysis on Pd^9 and Pt clusters 10 and $C_2H_6-O_2^{-11}$ catalysis on Pt clusters and on the known effects of O* coverage and binding energy on the nature and effectiveness of the sites required for C-H bond activation. We show here that the activation of the first C-H bond in CH₄ is the kinetically relevant step on sparsely covered and O*- saturated Pd metal clusters and on PdO clusters and that such steps evolve from oxidative addition, to H-abstraction, and ultimately to σ -bond metathesis, each with distinct transition-state structures, as the oxygen chemical potential increases. These diverse C–H bond activation paths evolve in response to differences in the charge and accessibility of oxygen species [chemisorbed oxygen atom (O*) on Pd; lattice oxygen (Oox) on PdO] and Pd centers (Pd0 or Pd2+) and in their respective interactions with the CH3 and H moieties that incipiently form at C-H activation transition states, which determine, in turn, activation free energies and rates. Metal centers activate the C-H bond serving as both the nucleophile and electrophile during the oxidative addition on Pd⁰ sites at Pd surfaces, chemisorbed oxygen atoms (O*) activate the C-H bond in a H-abstraction step involving the reductive deprotonation of the C-H bond on O*-saturated Pd⁰ surfaces, and metal and ligand pairs $(Pd^{2+}-O^{2-})$ activate the C-H bond in a concerted path where the metal acts as the nucleophile and the metal-ligand pair as the electrophile in a σ -bond metathesis step. These mechanistic bases seem also generally applicable to C-H bond activation on surfaces of sulfides, carbides, and nitrides and resemble that on organometallic complexes. The mechanistic synergies illustrated here in heterogeneous and homogeneous catalysis provide a rigorous description for the ubiquitous C-H bond activation paths in both systems. ## 2. METHODS 2.1. Catalyst Synthesis. Pd/Al₂O₃ (0.2 % wt) was prepared by incipient wetness impregnation of γ-Al₂O₃ (Sasol North America Inc., lot no. C1643, 193 m² g⁻¹, 0.57 cm³ g⁻¹ pore volume) with aqueous solutions of $Pd(NO_3)_2$ (Aldrich, 99.999% purity, 10 % wt $Pd(NO_3)_2$ in 10 % wt HNO₃). The γ -Al₂O₃ was treated in flowing dry air (Praxair, zero grade, 60 cm³ g⁻¹) by heating to 1073 K at 0.083 K s⁻¹ and holding for 5 h before the impregnation step. Impregnated powders were treated in stagnant ambient air at 383 K for >4 h. These samples were then treated in flowing dry air (60 cm³ g⁻¹) by heating to 623 K at 0.033 K $\rm s^{-1}$ and holding for 3 h and then to 1073 K at 0.083 K $\rm s^{-1}$ and holding for 10 h, before cooling to ambient temperature. These samples were finally treated in a flowing H_2 –He mixture (5 kPa H_2 , Praxair, UHP grade H_2 and He, 60 cm³ g⁻¹) to 1023 K (at 0.083 K s⁻¹) and held for 5 h, cooled in He to ambient temperature, and passivated by exposing samples to a flowing 0.5% O2/He mixture $(0.5\% \text{ O}_2/\text{He}, \text{ Praxair, certified standard, } 30 \text{ cm}^3 \text{ g}^{-1}) \text{ for } 2 \text{ h. These}$ catalyst powders were mixed with SiO₂ (Davison Chemical, grade 923, CAS no. 112926-00-8, 280 m² g⁻¹) to give a SiO₂/catalyst mass ratio of 200 and subsequently pelleted and sieved to retain 106-250 μm aggregates. The Pd dispersion (the fraction of Pd atoms residing at cluster surfaces) in these samples was determined from irreversible O2 chemisorption uptakes (1:1 O:Pd_{surface}) at 313 K, measured in a volumetric adsorption apparatus (Autosorb-1, Quantachrome) on samples treated at 673 K in flowing H_2 (30 cm³ g⁻¹) for 2 h. The mean cluster size was estimated from these dispersion values by assuming hemispherical Pd clusters with the atomic density of bulk Pd metal $(12.0 \text{ g cm}^{-3}).$ 2.2. Steady-State Catalytic Rate Measurements. Catalyst aggregates (Pd/Al₂O₃ and SiO₂ mixtures, 0.12-0.5 g, SiO₂-to-Pd/ Al₂O₃ mass ratio of 200) were physically mixed with quartz
powder (Fluka, product no. 84880, $106-250 \mu m$ diameters) at quartz-to-Pd/ Al₂O₃ mass ratios of 200–1200 to avoid intraparticle and bed gradients in temperature or concentration. The quartz powder, SiO2 diluents (Davison Chemical, grade 923, CAS no. 112926-00-8, 280 m² g⁻¹), and Al₂O₃ support did not give detectable rates at any of the reaction conditions used. The catalyst and diluent mixtures were held on a quartz frit within a quartz tubular reactor (8.1 mm ID) with plug-flow hydrodynamics and operated differentially. Bed temperatures were measured with a K-type thermocouple held within a concentric quartz thermowell located at the center of the catalyst bed. All samples were treated in 5% H₂/He (1.67 cm³ s⁻¹) by heating to reaction temperatures of 800-975 K at 0.083 K s⁻¹ and then in flowing He $(1.67 \text{ cm}^3 \text{ s}^{-1})$ before exposure to CH_4-O_2 reactants. Reactant mixtures were prepared by mixing 25% CH₄/He (Matheson, certified plus grade) with pure O₂ (Praxair, UHP grade) or 5% O₂/He (Praxair, certified standard grade) and with He (Praxair, UHP grade) using electronic mass flow controllers (Porter 201). CH₄, O₂, and CO₂ concentrations in the inlet and outlet streams were measured by gas chromatography (Agilent 3000A Micro GC, equipped with PoraPLOT Q or Mol Sieve 5A columns connected to thermal conductivity detectors). $\mathrm{CH_4}$ conversion turnover rates were determined from effluent $\mathrm{CO_2}$ concentrations, and the number of exposed Pd atoms determined from $\mathrm{O_2}$ chemisorption. Heat and mass transport corruptions on rate data reported here were ruled out from turnover rate data that did not depend on intrapellet and bed dilution ratios, 13 as reported elsewhere. 9 **2.3.** *Ab initio* **Density Functional Methods.** The structures and energies of the reactant, transition, and product states in CH_4-O_2 reactions on Pd(111), 2/3 ML O*-covered Pd(111) [hereinafter ML denotes monolayer], PdO(100), and PdO(101) single crystal surfaces shown in Figure 1a–d and 1 ML O*-covered clusters of 201 Pd atoms (denoted as O^*/Pd_{201}) and PdO clusters of 183 atoms ($Pd_{94}O_{89}$) shown in Figure 2a,b were calculated using periodic plane-wave DFT Figure 2. DFT-optimized model of cuboctahedral 1 ML O*-covered Pd and PdO clusters used to examine the activation of methane. (a) 1 ML O*-covered Pd₂₀₁ and (b) 183 atom PdO (Pd₉₄O₈₉) clusters. The Pd and O atoms are shown in blue and red, respectively. The (100) and (101) facets on Pd₉₄O₈₉ cluster are highlighted in blue and green, respectively. The nonstoichiometric Pd_{ox}-O_{ox} (labeled Pd¹_{ox,1}-O¹_{ox}), the stoichiometric Pd_{ox}-O_{ox} (labeled Pd²_{ox,1}-O¹_{ox}) and the O_{ox}-O_{ox} site pairs (labeled O¹_{ox}-O¹_{ox}) are the only sites considered as the sites involving the four-coordinate O²_{ox} sites are inaccessible. Note that O¹_{ox} atoms are shared between PdO(100) and PdO(101) facets. methods, as implemented in the Vienna ab-initio simulation program (VASP). $^{14-16}$ The ideal single crystal Pd(111), PdO(100), and PdO(101) surfaces were used to elucidate the mechanisms and understand the charge-transfer processes that occur along the reaction coordinate, whereas the more realistic 1 ML O*-covered Pd201 and Pd₉₄O₈₉ clusters were used to confirm the results from the ideal surfaces and provide more reliable energies. All calculations were carried out spin-polarized within the generalized gradient approximation (GGA) using the Perdew-Wang 91 (PW91)13 exchangecorrelation potential and ultrasoft pseudopotentials (US-PP) to describe interactions between core and valence electrons.¹⁷ Wave functions were constructed from periodic plane-wave expansions out to a kinetic energy cutoff of 396 eV. A $3 \times 3 \times 1$ Monkhorst-Pack kpoint mesh was used to sample the first Brillouin zone. 18 The wave functions were converged to a tolerance of 10⁻⁴ eV, while the geometric structures were optimized until forces on each atom were <0.5 eV nm⁻¹. The occupancies of the wave functions were determined using the second-order Methfessel-Paxton method¹⁹ to smear out discontinuities over an energy width of 0.2 eV. Pd(111) surfaces (Figure 1a) were modeled using a 3×3 unit cell consisting of four Pd atom layers, each with nine Pd atoms per layer and a 1 nm thick vacuum region above the surface; this configuration avoids interactions between atoms in adsorbates at Pd surfaces and Pd atoms at the bottom of the next slab. The lattice constant obtained with PW91 functionals and ultrasoft pseudopotentials was 0.395 nm, in agreement with experimental values (0.389 nm).²⁰ The active Pd-Pd site pairs are labeled in Figure 1a, Pd-O* and O*-O* in Figure 1b, Pd_{ox}-O_{ox} in Figure 1c, and Pd_{ox}-O_{ox} and O_{ox}-O_{ox} in Figure 1d. C-H bond activation barriers on four-layer Pd(111) slabs, in which the top two layers were allowed to relax and the bottom two layers were kept at either the experimental or the DFT-derived distances, differed by <5 kJ mol⁻¹. In the calculations on Pd clusters [bare cuboctahedral Pd₂₀₁, O*-covered cuboctahedral Pd₂₀₁ (Figure 2a)] and PdO clusters (Pd₉₄O₈₉, Figure 2b), the clusters were placed in the center of the $3 \times 3 \times 3$ nm³ unit cell with minimum distances of at least 0.8 nm between each of the cell edges. All of the atoms of the cluster were allowed to fully optimize subject to the same electronic and geometric convergence criteria outlined above for the surfaces. In order to model the charge transfer processes that occur as methane is activated on the oxygen-oxygen (O*-O*) and Pd-oxygen atom (*-O*) site pairs on O*-covered Pd clusters, we have examined the reactivity of methane on ideal Pd(111) surfaces with different O*coverages as presented in the Supporting Information. The 2/3 ML O* (see Figure 1b) was chosen as a simple model of the O*-saturated surface as it resulted in the maximum O* coverage on Pd(111) with the lowest negative differential enthalpy over a surface that did not reconstruct. We recognize that such coverages cannot be realized experimentally on single crystal surfaces as these surfaces reconstruct for coverages greater than 1/4 monolayer of O^{*21} in order to accommodate the strain from the increased repulsion in the O* adlayer. Supported metal clusters, however, can achieve surface coverages of 1 ML O* without converting to an oxide as they can expand radially to remove strain (Figure 2a). We use here an ideal Pd(111) model surface with 2/3 ML O* to monitor charge transfer along the reaction coordinate. Such a simple model seems reasonable because C-H activation on O*-covered Pd surfaces depends only on the binding and reactive properties of each O-atom, without any effects of distances to vicinal Pd or O atoms (evidence in Sec. 3.2), making transition-state structures and mechanistic interpretation insensitive to the detailed structure of O*-covered surfaces. The optimized structures of the reactant, transition, and product states as well as the activation energies for C-H bond dissociation in methane were also calculated over O^* -covered Pd_{201} clusters which accommodate up to 1 ML O* to provide a more faithful model of the working O*covered Pd catalysts used herein. The activation of the first C–H bond of CH_4 was also examined on PdO(100) and PdO(101) surfaces which are reported to be the most stable PdO surfaces. These surfaces were constructed using a 3 \times 3 PdO unit cell consisting of 32 Pd and 32 O atoms with a 1 nm vacuum gap between slabs. The PdO(100) surface is comprised of alternating parallel layers of Pd and PdO2 as shown in Figure 1c, thus resulting in an overall stoichiometry of PdO. The exposed (100) surface layer is PdO₂ in character and thus nonstoichiometric where each Pd atom binds to 3 Pd and 4 O neighbors and each oxygen bonds to 3 Pd atoms (2 in the surface and 1 subsurface). These nonstoichiometric Pd and O surface atoms are labeled as Pd¹_{ox,i} and as O¹_{ox}, where the superscript 1 specifies that these are nonstoichiometric surface atoms and the subscript i on the Pd_{ox} refers to the specific Pd atom where 1 refers to the active Pd center and 2 and 3 refer to nearest-neighbor Pd sites which are used only to aid in charge analysis. The PdO(101) surface is comprised of alternating planes that run parallel to the diagonal of the unit cell which is depicted in Figure 1d. These alternating planes are comprised of stoichiometric Pd centers (site Pd²_{oxi}) that are bound to 2 Pd and 3 O nearest neighbors and nonstoichiometric Pd centers (site $Pd^{1}_{ox,i}$) with 3 Pd and 4 O neighbors, respectively. The PdO(101) surface is comprised of the two different oxygen atom types labeled O_{ox} and O_{ox} in Figure 1d. The O_{ox}^1 site sits within the PdO(100) plane and is thus identical to the O_{ox}^1 sites of the PdO(100) surface. The O_{ox}^2 site which has 4 Pd nearest neighbors and sits subsurface is considered inactive. The Pd and O atoms in the bottom three layers of both the PdO(100) and PdO(101) slabs were held fixed at their bulk lattice positions (0.202 nm interatomic distance between Pd^{2+} and O^{2-} ,)²³ while the three outer layers and any adsorbed species were fully optimized using the same convergence criteria as for Pd(111). The PdO surfaces and clusters were modeled using standard GGA approach presented above. The Hubbard U parameter is typically used as a correction to account for the correlation of d and f electron that is not considered in standard DFT methods. These corrections are required to describe electronic transitions between valence and conduction bands and reduction-oxidation reactions in oxides with d and f electrons, as such processes involve electron transfer between two very different environments as a result of the concomitant changes in the oxidation state of the metal centers. Previous studies²⁴ have shown that GGA+U simulations (with U = 7 eV) give accurate band gaps
for bulk PdO but do not significantly influence adsorption energies for H₂O and OH on PdO. We show here that there are no changes in oxidation state for Pd or O atoms in PdO along the reaction coordinate and that C-H activation involves the heterolytic splitting of the C-H bond, where the negative charge accumulates on the methyl fragment instead of the Pd atom (Figure 12). Thus, we do not expect any effects of introducing a U parameter. Indeed, the barriers for C-H bond activation on PdO(101) and PdO(100) surfaces with and without U (7 eV) differed by <2 and <1 kJ mol⁻¹, respectively. All transition states reported herein were isolated using the nudged elastic band $(NEB)^{25}$ method to find the lowest-energy path along a sequence of steps from the reactant to the transition state and subsequently refined using climbing image-nudged elastic band (CI-NEB) methods.²⁶⁻²⁸ The NEB approach was used to identify the highest-energy image along the reaction coordinate and to determine the forces on this structure. The forces were subsequently used to maximize the energy of this structure along the reaction coordinate while minimizing the energy of this structure along all other modes. Transition-state structures were considered to have converged when forces on all atoms were <0.5 eV nm⁻¹. All activation barriers are reported as the difference in energy between the C-H activation transition state and CH₄(g), because such values reflect the relevant barriers determined from rate data. Zero-point energy corrections at 873 K decreased activation barrier for the initial C-H bond activation in methane by <6 kJ mol⁻¹ on Pd(111) and similar small effects are expected on the other surfaces. The charges on all surface atoms along the reaction coordinate were calculated using Bader charge methods, ²⁹ which split the charge density in the region between two atoms along a plane that is perpendicular to the connecting line between the two atoms and shows a minima in charge density. Such an approach provides essential mechanistic insights into the role of Pd and O surface species in C–H bond activation, but as in the case of all charge analysis formalisms, it cannot rigorously or unequivocally apportion the actual charges at any one atom. ## 3. RESULTS AND DISCUSSION 3.1. Kinetically Relevant Steps in CH_4-O_2 Reactions on Surfaces of Pd and PdO Clusters. Turnover rates for CH_4-O_2 reactions were measured over a broad range of O_2 (0.15–87 kPa) and CH_4 (0.8–4.8 kPa) pressures at 873 K. Figure 3 shows the effect of O_2 pressure on pseudo-first-order **Figure 3.** Reactive CH₄ collision probabilities, also the pseudo-first-order rate coefficients $(r_{\text{CH}_4}(\text{CH}_4)^{-1})$, on 0.2 % wt Pd/Al₂O₃ (21.3 nm mean Pd cluster diameter determined at the metallic state) as a function of O₂ pressure at 873 K. $(0.94-3.92\times10^9~\text{cm}^3~\text{(s mol Pd}_{\text{surface}})^{-1}$; 200 SiO₂/catalyst intraparticle dilution ratio; 200 and 1200 quartz/catalyst interparticle dilution ratio for O₂ pressures below and above 4 kPa, respectively). rate coefficients, defined as the turnover rates divided by the $\mathrm{CH_4}$ pressure ($r_{\mathrm{CH_4}}(\mathrm{CH_4})^{-1}$), on $\mathrm{Pd/Al_2O_3}$ (0.2 % wt Pd, 21.3 nm mean Pd cluster diameter) at differential $\mathrm{CH_4}$ conversions (<1.5%). Similar effects of $\mathrm{O_2}$ pressure on rate coefficients were reported at higher temperatures, but the sharp increase in rate coefficients occurred at higher $\mathrm{O_2}$ pressures (1.7 kPa at 873 K and >35 kPa at 973 K) than at the lower temperatures of the current study. Such transitions reflect the interconversion of Pd to PdO, as we show next, and these temperature effects show that the Pd–PdO phase boundary moves to higher oxygen chemical potentials as temperature increases, as expected from the exothermic nature of the Pd oxidation reaction. These rate coefficients did not vary with time, indicating that Pd clusters and their surfaces did not reconstruct during steady-state catalysis; active sites and their reactivity were constant throughout all catalytic measurements. No CO or H_2 was detected (0.15–73 kPa O_2 , 4.85 kPa CH_4 , 873 K), even at the lowest O_2 pressures, indicating that catalytic partial oxidation did not occur at detectable rates at conditions of rigorous kinetic control. These conclusions were confirmed by the much higher reactivity of ^{12}CO compared with $^{13}CH_4$ on Pd clusters, as also found for $CH_4-O_2^{\ 31}$ and $C_2H_6-O_2^{\ 11}$ reactions on Pt catalysts. Such data preclude the formation and removal of CO from the catalyst bed in the presence of O_2 . At low O_2 pressures (<1.7 kPa), pseudo-first-order rate coefficients remained constant with O₂ pressure (Figure 3). In this regime, the effects of CH₄ and O₂ pressure were consistent with turnover rates proportional to CH₄ pressure and independent of O₂ pressure (Figure 4a). These data, taken together with measured CH_4/CD_4 kinetic isotope effects (KIE = 2.01 at 873 K; Table 1), indicate that the activation of the first C-H bond in CH₄ is the sole kinetically relevant step and that this step occurs on Pd cluster surfaces saturated with chemisorbed oxygen atoms (O*). The rates of ${}^{16}O^{18}O$ formation with $CH_4 - {}^{16}O_2 - {}^{18}O_2$ and 16O2-18O2 reactant mixtures were identical within experimental accuracy. 9 These similar $^{16}\mathrm{O}-^{18}\mathrm{O}$ isotopologue formation rates with CH_4 - $^{16}O_2$ - $^{18}O_2$ (O_2 <1.7 kPa) and with ¹⁶O₂-¹⁸O₂ (at chemical equilibrium) mixtures show that chemisorbed O* species are present at similar coverages in the presence and absence of CH₄ and that O* species remain in quasi-equilibrium with $O_2(g)$ during CH_4-O_2 reactions. Therefore, oxygen chemical potentials at Pd cluster surfaces depend only on O₂(g) pressures and are unaffected by the presence of reactants or products (CH₄, CO₂, and H₂O); these chemical potentials rigorously represent the thermodynamic driving force for all surface or bulk transformations of Pd clusters. As a result, the O* content in Pd clusters during catalysis can be determined rigorously from O2 chemisorption uptakes at the O2 pressures and temperatures of catalysis but without the concurrent presence of CH₄. Volumetric O₂ uptakes were used to measure O/Pd atomic ratios and to determine the extent to which Pd clusters covered with O* species and ultimately form bulk PdO with increasing oxygen chemical potentials. At 873 K and low O2 pressures (<7.5 kPa), O/Pd_{total} atomic ratios (Pd_{total} denotes the total number of Pd atoms) were similar to those measured at near ambient temperatures (313 K), which prevent bulk dissolution and retain O* species at surfaces with an adsorption stoichiometry of unity $[(O/Pd_{surface})_{313K} = 1; Pd_{surface}]$ denotes Pd atoms at cluster surfaces]. The O/Pd_{total} ratios at near ambient temperature indicate that the fractional Pd dispersion of this sample is 0.047 $[(O/Pd_{total})_{313K} = Pd_{surface}/Pd_{total} =$ 0.047], corresponding to a 21.3 nm mean cluster diameter.9 This value, taken together with the O/Pd_{total} ratios at 873 K, give an O/Pd_{surface} ratio of 1.06 at 873 K, indicating that clusters retain their metallic bulk during CH₄ oxidation catalysis, but their surfaces are saturated with O* with traces of oxygen possibly dissolved in their bulk. At O* saturation coverages, the dearth of uncovered Pd atoms (*) causes C-H activation steps to require the involvement of O* in H-abstraction steps, without the concerted involvement of Pd atoms in stabilizing the CH₃ groups formed. These CH₃ groups retain radical-like character in the transition state and ultimately bind to another O* to form bound methoxy species as the products of the C-H activation elementary step. Therefore, the dynamics and specifically the free energy of activation of this kinetically relevant step depend on the thermochemical properties of O*, as proposed and confirmed by kinetic and isotopic studies of alkane oxidation reactions (CH₄¹⁰ and C₂H₆¹¹) on Pt clusters and consistent with DFT-derived activation energies for C-H cleavage on O*-O* site pairs at oxygen-saturated surfaces of Pt¹⁰ and Pd clusters in cuboctahedral shape with 201 metal atoms and at oxygen saturated Pd(111) surfaces (where 2/3 ML O* is used to mimic saturation on Pd(111)), as shown in Rate coefficients increased markedly with increasing O_2 pressure (above ~ 3 kPa) and ultimately reached nearly Figure 4. (a,b) CH₄ conversion turnover rates as a function of CH₄ (\spadesuit) and O₂ (\spadesuit) pressures on 0.2 % wt Pd/Al₂O₃ (21.3 nm mean Pd cluster diameter determined at the metallic state) at 873 K in the range of oxygen chemical potential that led to clusters in metallic Pd (a) or PdO (b) phase. Oxygen chemical potential during catalysis is given by the O₂ pressures on O* covered metallic Pd clusters, as shown elsewhere⁹ but by the O₂/CH₄ ratios on PdO cluster surfaces; space velocity 0.94–3.92 × 10⁹ cm³ (s mol Pd_{surface})⁻¹; 200 SiO₂/catalyst intraparticle dilution ratio; 200 and 1200 quartz/catalyst interparticle dilution ratio for O₂ pressure below and above 4 kPa, respectively; \spadesuit : 0.48 and 77 kPa O₂ on Pd (a) and PdO (b) clusters, respectively; \spadesuit : 1.0 and 1.2 kPa CH₄ on Pd (a) and PdO (b) clusters, respectively. Table 1. Measured C-H/C-D Kinetic Isotope Effects, Activation Barriers and Entropies, and DFT-Derived Activation Barriers for C-H Bond Activation in CH₄ on Pd Metal, O*-Covered Pd Metal, and PdO Clusters and Surfaces | | | | C-H/C-D | activation
barrier | pre-exponential
factor
(experiment) | activation entropy ^e | activation barrier (theory) ($kJ \text{ mol}^{-1}$) | | |--------------------|---|--------------------|-----------------|-------------------------
---|--|--|--| | | catalysts | active sites | KIEs | (kJ mol ⁻¹) | $(kPa^{-1} s^{-1})$ | (J mol ⁻¹ K ⁻¹) | on extended surfaces | on clusters | | Pd ^a | 1.6 % wt Pd/ZrO ₂ (12.5 nm Pd clusters) ^d | *_* | 1.41
(823K) | 84 | 4×10^5 | -125 | 73 ^f | 68 | | O*/Pd ^b | 0.2 % wt Pd/Al ₂ O ₃ (21.3 nm Pd clusters) ^d | O*-O* | 2.01
(873 K) | 158 | 1.5×10^9 | -57 | 145 ^g (0.67 ML O*) | 141 ^h | | | | *-O* | | u.d. | u.d. | u.d. | 117 ^g (0.67 ML O*)
133 ^j (0.11 ML O*) | 96 ⁱ (0.985 ML O*)
131 ^k (0.995 ML
O*) | | PdO^c | 0.2 % wt Pd/Al $_2$ O $_3$ | $Pd_{ox}-O_{ox}$ | 1.99
(873 K) | 61 | 1.4×10^5 | -134 | 62 ¹ | 61 ^m | | | $(21.3 \text{ nm Pd} \atop \text{clusters})^d$ | $O_{ox}-O_{ox}$ | | | | | 196 ^l | - | | | | $Pd_{ox} - O_{ox}$ | | | | | 131 ⁿ | _ | "From ref 32, measured in CH_4-CO_2 mixtures. ${}^b1.2-1.6$ kPa O_2 . c72 kPa O_2 . dN ominal mean cluster diameters, estimated based on Pd in metallic state with the assumption of an oxygen-to-exposed Pd atomic ratio of one and hemispherical Pd cluster shapes. "Measured entropy changes required for $CH_4(g)$ to form the C-H activation transition-state complexes. ${}^fPd(111)$ surfaces. ${}^g0.67$ ML O* covered Pd(111) surfaces. ${}^hO^*$ covered Pd(111) surfaces of the 1 ML O* covered cuboctahedral Pd clusters with 201 Pd atoms. ${}^iO^*$ covered Pd(111) surfaces of the 0.985 ML O* covered cuboctahedral Pd clusters with 201 Pd atoms (hree oxygen vacancies). ${}^f0.11$ ML O* covered Pd(111) surfaces. ${}^kO^*$ covered Pd(111) surfaces of the 0.995 ML O* covered cuboctahedral Pd clusters with 201 Pd atoms (one oxygen vacancies). ${}^fPdO(101)$ surfaces. ${}^mPdO(101)$ surfaces of the 183 atom PdO ($Pd_{94}O_{89}$) cluster. ${}^mPdO(100)$ surfaces. u.d.: ${}^*-O^*$ sites are undetectable experimentally at the temperature and oxygen chemical potential range used for the rate measurements reported herein. constant values (12.9 mol CH₄ (g-atom Pd_{surface}-kPa-s)⁻¹, 873 K) at 15–80 kPa O₂ (Figure 3). This sharp kinetic transition coincides with the conversion of O*-saturated Pd metal clusters to PdO, during which oxygen atoms incipiently dissolve into the cluster bulk. Pd clusters concurrently expand, and the oxidation state of Pd atoms increases, driven by thermodynamics, as oxygen chemical potentials (set by the prevalent O₂ pressures) increase. These transitions and their kinetic consequences have been previously reported for Pd foils¹ and dispersed Pd clusters⁵ and coincide with an increase in O_2 uptakes, which exceed saturation levels and approach the expected O content of bulk PdO (O/Pd_{total} ratio = 0.98, as reported elsewhere).⁸ The higher rates that coincide with this phase transition did not lead to changes in the rate dependencies of CH_4 and O_2 pressures or in the measured values of C-H/C-D kinetic isotope effects (KIE), which remained similar to those for Pd metal clusters saturated with O^* (Figure 4a,b; KIE values of 1.99 (PdO) and 2.01 (O^*/Pd) $$CH_{4} + * + * \longrightarrow CH_{3} * + H *$$ (5a) $CH_{4} + * + *$ (5b) $(CH_{3} - Pd - H)^{\ddagger}$ (5c) $(CH_{3} * + H *)$ $$Pd_{2}$$ $$Pd_{3}$$ $$Pd_{4}$$ $$Pd_{3}$$ $$Pd_{4}$$ $$Pd_{5}$$ $$Pd_{4}$$ $$Pd_{5}$$ $$Pd_{4}$$ $$Pd_{5}$$ $$Pd_{5}$$ $$Pd_{6}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{8}$$ $$Pd_{1}$$ $$Pd_{2}$$ $$Pd_{3}$$ $$Pd_{4}$$ $$Pd_{5}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{8}$$ $$Pd_{1}$$ $$Pd_{2}$$ $$Pd_{3}$$ $$Pd_{4}$$ $$Pd_{5}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{1}$$ $$Pd_{2}$$ $$Pd_{3}$$ $$Pd_{4}$$ $$Pd_{5}$$ $$Pd_{7}$$ $$Pd_{7}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{8}$$ $$Pd_{9}$$ Figure 5. DFT-calculated structures of reactant (5a), transition (5b), and product (5c) states and energy changes (in kJ mol⁻¹; with respect to the energy of gas phase CH_4) for C-H bond activation steps on Pd metal atom (*-*) site pairs ($CH_4 + * + * \to CH_3 * + H *$) on Pd (111) surfaces. Blue: Pd atom, gray: C atom, white: H atom. Bond distances are given in nanometer. limits rates on both O*-saturated Pd⁰ and PdO cluster surfaces. CH_4-O_2 reaction rates are independent of O_2 pressure before and after Pd-PdO transitions, indicating that the density of active sites and their reactivity on either O*-saturated Pd⁰ or PdO cluster surfaces do not vary with reactant pressures. The marked increase in C-H activation rates upon Pd-PdO transitions reflects significant differences in the identity and reactivity of active sites for C-H bond activation on these two surfaces. First-order rate coefficients $[r_{CH_4}(CH_4)^{-1}]$ on O*-saturated Pd⁰ and on PdO clusters are accurately described by eqs 1a and 1b, which differ only in their respective values for C-H activation rate constants $(k_{C-H,O^*/Pd} \text{ and } k_{C-H,PdO})$ subscripts O*/Pd and PdO denote O*-saturated Pd⁰ and PdO clusters, respectively): at 873 K; Table 1). We conclude that C-H bond activation $\frac{r_{\text{CH}_4}}{(\text{CH}_4)}\bigg|_{\text{O*/Pd}} = k_{\text{C-H,O*/Pd}}(\text{O}_2)^0$ (1a) $$\left. \frac{r_{\text{CH}_4}}{(\text{CH}_4)} \right|_{\text{PdO}} = k_{\text{C-H,PdO}}(\text{O}_2)^0$$ (1b) C–H activation rate coefficients are ~25-fold larger on PdO than on O* saturated Pd⁰ surfaces at 873 K [12.9 vs 0.53 mol CH₄ (g-atom Pd_{surface}-kPa-s)⁻¹ on Pd clusters of 21.3 nm mean diameter, $k_{\rm C-H,PdO}(k_{\rm C-H,O^*/Pd})^{-1}$ = 24.3, 873 K, Figure 3]. C–H bond activation rate coefficients are also larger on PdO than on uncovered Pd⁰ clusters ($k_{\rm C-H,Pd}$) during CO₂ or H₂O reactions with CH₄ [4.0 and 4.3 mol CH₄ (g-atom Pd_{surface}-kPa-s)⁻¹ on 12.5 nm mean Pd cluster diameter; thus $k_{\rm C-H,PdO}(k_{\rm C-H,Pd})^{-1}$ = 3.0–3.2, 873 K], on which C–H bonds in CH₄ are activated on site pairs of Pd metal atoms (*–*).³² In Sections 3.2 and 3.3, we probe mechanistic basis for these marked differences in rates (Figures 3 and 4) and in the barriers for the activation of the first C–H bond, the sole kinetically relevant step, on all surfaces examined. Barriers and reaction energies for the subsequent C–H activation steps have been previously reported on close-packed surfaces of Pd(111),³³ Co(0001),³³ Ru(0001),³⁴ Ni(111),³³ Rh(111),³³ and Pt(111)³³ and found to be much smaller than for the activation of the first C–H bond, except for the cleavage of the last C–H bond on metal sites. This latter step proceeds via an alternate route, involving O* addition to form formyl intermediates that undergo C–H cleavage resulting in the formation of chemisorbed CO. The reactivity of PdO(101) and PdO(100) surfaces and the involvement of their lattice oxygens (O_{ox}) in the sequential oxidation of CH_x intermediates will be reported in a later study. Here, we probe the structures and energies of adsorbed reactants, transition states, and products during the initial C–H bond activation of CH_4 on uncovered Pd(111), O*-saturated Pd(111), PdO(101), and PdO(100) surfaces as well as on uncovered and O*-saturated Pd clusters with 201 Pd atoms (Pd₂₀₁) and on PdO clusters with 94 Pd and 89 O atoms (Pd₉₄O₈₉). 3.2. Mechanistic Interpretations and Theoretical Treatments of C-H bond Activation over *-*, *-O*, and O*-O* Site Pairs on Pd(111) Surfaces and on a Cuboctahedral Pd Cluster with 201 Pd Atoms. Figure 5 shows the structures of reactant (5a), transition (5b), and product (5c) states for the first C-H bond activation in CH₄ on the uncovered Pd(111) surface. This step involves weakly adsorbed CH₄, which consists of an η_1 -complex that forms via electron donation from a C-H bond to a Pd surface atom (Pd atom labeled "Pd1" in Figure 5). Next, the C-H bond lengthens in a process that occurs concurrently with electron backdonation from Pd to the C-H antibonding $(\sigma^*_{\text{C-H}})$ orbital and with the incipient insertion of the Pd atom into the C-H bond to form the three center $(H_3C\cdots Pd\cdots H)^{\ddagger}$ transition state (5b); the latter ultimately decomposes into the CH₃-Pd and H-Pd products (5c) of this elementary step. This process closely resembles oxidative addition reactions of alkanes on mononuclear metal centers in organometallic complexes, 35 except that the back-donated electrons from the Pd surface are delocalized over the other metal atoms. As a result of electron delocalization, this step does not lead to full changes in valence for any specific Pd atom (e.g., the Pd atom labeled "1" in Figure 5) involved in the transition state. In contrast, changes in valence are required for similar reactions at metal centers in $mononuclear\ organometallic\ complexes. ^{36,37}$ On Pd(111) surfaces, the C–H bond length increases from 0.109 nm in $CH_4(g)$ to 0.155 nm at the transition state. This process decreases the energy of σ_{C-H}^* antibonding states and thus allows for the backdonation of electrons from the metal into this state and the formation of strong Pd–C and Pd–H bonds at the transition state. The interaction of the C–H bond Figure 6. Change in Bader charges on Pd₁ (purple diamonds), Pd₂ (green squares), and Pd₃ (orange triangles) atoms in the Pd(111) surface and on dissociated H (blue triangles) and CH₃ (maroon diamonds) species and the reaction energy (black triangles) along the reaction coordinate during the C–H bond activation of methane over Pd(111) surfaces. The reaction coordinate is reported by the NEB images and the C–H bond distance between the reactant (image 1), transition state (highest energy, image 4), and product (image 6). Pd₁, Pd₂, and Pd₃ atoms are labeled in Figure 5. with Pd leads to the formation of a three-centered (H₃C···Pd··· H)[‡] transition state (5b, Figure 5) with
Pd-C and Pd-H bond distances for the Pd atom labeled Pd₁ of 0.219 nm (vs 0.206 nm in the product, 5c) and 0.169 nm (vs 0.246 nm in the product, **5c**), respectively, and an activation barrier of 73 kJ mol⁻¹. The calculated transition-state structure (5b) and the activation barrier (73 kJ mol⁻¹) for C-H bond activation in methane on Pd(111) surfaces are very similar to those on the (111) surface of a Pd₂₀₁ cluster (68 kJ mol⁻¹). These transition states resemble the products and contain nearly cleaved C-H bonds and therefore occur late along the reaction coordinate, allowing their stabilization by the Pd-C and Pd-H bonds formed in the final state. Similar transition-state structures have been reported for CH₄ activation on Pt(111), ³¹ Rh(111), ³⁸ Ir(111), ³⁹ and also on other 3d, 4d, and 5d transition metals. ⁴⁰ These structures are also consistent with transition states proposed for CH₄ activation on mononuclear organometallic complexes [Pd-(PH₃)₂]⁴¹ and for C-H bond activation reactions of larger alkyl homologues on Pd(111),⁴² which also proceed via oxidative addition processes. Estimates of the charges on Pd atoms and the CH3 and H fragments along the reaction coordinate as CH4 evolves the $(H_3C\cdots Pd\cdots H)^{\frac{1}{4}}$ transition-state structures on Pd(111) surfaces (5b, Figure 5) are shown in Figure 6. These charge values along the reaction coordinate confirm that C-H bond activation proceeds via oxidative addition with electron donation from CH₄ to the metal surface and concurrent backdonation of electron density into the antibonding $\sigma_{\mathrm{C-H}}{}^*$ orbital of the activated C-H bond. These coupled electron-transfer steps cause only slight changes in charge (<0.1 e⁻) along the reaction coordinate for all species involved (Pd atoms, CH₃ and H fragments). The charges on the Pd active center (atom Pd₁ in Figures 5 and 6) and the CH₃ fragment become slightly more positive (by +0.126 and +0.093 on Pd₁ and CH₃, respectively) and the H atom becomes slightly more negative (by -0.022) in moving from the reactant to the transition state. As in oxidative addition on organometallic clusters, the active metal center (Pd₁ in Figure 5) acts as both electrophile and nucleophile and, in doing so, shuttles electron density via concerted donation from $\rm CH_4$ to Pd and backdonation from Pd to $\sigma_{\rm C-H}{}^*$ antibonding states. 36,37 As the oxygen chemical potentials increase, O* coverages increase and Pd atom-oxygen (*-O*) site pairs may form and activate C-H bonds via a different mechanism than on *-* sites, as also shown on Pt clusters [experimental: CH_4 , 10 C_2H_6 ; 11 DFT: CH_4 on Pt_{201} clusters 10]. In contrast with Pt, rate coefficients on Pd (Figure 3) do not show an intermediate kinetic regime, in which such site pairs become the prevalent C-H activation sites. These differences reflect stronger bonds with O* at Pd than Pt surfaces (DFT-calculated O* adsorption energies: -382 and -354 kJ mol⁻¹ for Pd(111) and Pt(111) surfaces, respectively). 43 *-O* site pairs may become prevalent at higher temperatures and lower O2 pressures than in the current study, as O* species are removed via recombinative desorption or faster reactions with CH₄ to expose Pd centers. These Pd atom-oxygen (*-O*) site pairs were examined using theory to probe the influence of O* binding energies on C-H bond activation barriers. Reactant, transition state, and product structures and activation and reaction energies were calculated on Pd(111) at 0.11-0.67 ML O*-coverages (details in Supporting Information, Section 2). At 0.67 ML O*, the C-H activation barrier (117 kJ mol⁻¹) is significantly higher than on bare Pd(111) (73 kJ mol⁻¹). On *-O* site pairs, C-H activation proceeds via Pd atom insertion into the C-H bond and concerted H-abstraction by vicinal O* species, C-H bonds at the transition state on 2/3 ML O* covered Pd(111) surfaces (0.136 nm, Figure S2a, structure (S2a.ii)) are shorter than on bare Pd(111) surfaces (0.155 nm, (5b)), an indication that the transition state (S2a.ii) occurs earlier along the reaction coordinate. O* causes some repulsion with CH3* groups at the transition state, thus weakening Pd···CH₃ and Pd···H bonds, which are longer (by 0.013 and 0.045 nm, respectively) than for the transition state on bare Pd(111) surfaces (5b). These repulsive interactions lead to higher activation barriers on *-O* sites (at 2/3 ML O*; 117 kJ mol⁻¹) than on bare Pd(111) surfaces (*-*; 73 kJ mol⁻¹). These barriers become even higher as O* coverages decrease (117 and 133 kJ mol⁻¹ for 0.67 and 0.13 ML O*; Figure S2b) because O* species become more strongly bound and less reactive. Thus, we conclude that *-O* site pairs are less effective than *-* site pairs for C-H bond activation on Pd surfaces. The structures and energies of C–H activation transition states were also calculated on * –O * site pairs at (111) surfaces of Pd₂₀₁ clusters nearly saturated with O * and containing either one oxygen vacancy (0.995 ML) or three oxygen vacancies (0.985 ML). These clusters expand outward to allow for O * coverages of 1 ML (Section 2.3), thus providing a more accurate representation of the sites and coverages found in practice than Pd(111) surfaces. Transition state structures at one and three oxygen vacancy sites on Pd₂₀₁ clusters are shown in Figure 7, as structures (7b) and (7a), respectively. The activation barrier on one-vacancy *-O* sites at Pd₂₀₁ cluster surfaces (Figure 7, (7b)) was slightly higher (by \sim 14 kJ mol⁻¹) than on *-O* sites on 2/3 ML O*/Pd(111) surfaces (Figure S2a, (S2a.ii)), because of slightly stronger repulsion between Figure 8. DFT-calculated structures of reactant (8a), transition (8b), and product (8c) states and energy changes (in kJ mol⁻¹) for C-H bond activation steps over O*-O* site pairs (labeled O_1 - O_2) (CH₄ + O* + O* \rightarrow CH₃O* + OH*) on 0.67 ML O*-covered Pd (111) surfaces. Blue: Pd atom, red: O atom, gray: C atom, white: H atom. Bond distances are given in nanometer. Figure 9. The change in Bader charges on Pd_1 (purple diamonds), Pd_2 (green squares), Pd_3 (orange triangles), Pd_4 (magenta diamonds), and Pd_5 (brown circles) atoms in the 0.67 ML O* covered Pd(111) surface, dissociated H (blue diamonds) and CH_3 (maroon triangles) species, active O_1 (red circles) and O_2 (blue triangles) species that result in OH^* and CH_3O^* , respectively, and the reaction energy (black triangles) along the reaction coordinate during the C-H bond activation of methane over the O^*-O^* site pair on the 0.67 ML O^* covered Pd(111) surface. The reaction coordinate is reported by the NEB images and the C-H bond distance between the reactant (image 1), transition state (highest energy, image 3), and product (image 6). Pd_1 , Pd_2 , Pd_3 , Pd_4 , Pd_5 , O_1 , and O_2 are labeled in Figure 8. O* and CH₃ groups at the higher coverages on Pd cluster surfaces. Activation barriers on O*-covered Pd₂₀₁ clusters decrease from 131 to 96 kJ mol⁻¹ as two additional vacancies become available (Figure 7, (7a)). The three-vacancy sites form a larger Pd ensemble that allows the CH₃ fragment access to Pd centers without repulsion by vicinal O*, a conclusion confirmed by the shorter and stronger Pd···CH₃ bonds (0.231 nm, (7a)) than on the single-vacancy structure (0.319 nm, (7b)). O*-saturated surfaces lack oxygen vacancies and exposed Pd atoms (*), thus requiring C-H bond activation to occur on O*-O* site pairs, as shown in Figure 8 on O*-covered Pd(111) surfaces and Figure 7c on O* saturated Pd₂₀₁ clusters. This step involves H-abstraction from CH₄ by an O* (O₁ in Figure 8b) in the O*-O* pair to form a loosely bound CH₃ fragment and a nearly formed O-H* bond (0.104 vs 0.102 nm in the product state) as well as an essentially cleaved C-H bond [0.170 vs 0.109 nm in CH₄(g)] at the (O*··· CH₃•···*OH)[‡] transition state (8b). This homolytic C-H bond activation to form CH₃ occurs via electron transfer from H[•] to O* during the H-abstraction process. The CH₃• group interacts weakly (-6 kJ mol⁻¹) with the vicinal O* (labeled as O_2 in (8b)) at the transition state and its long $O^* \cdots CH_3$ distance (0.258 nm) relative to that in the bound methoxy products (0.143 nm; 8c), taken together with its sp configuration, confirm its radical-like character. Weak interactions with O* (labeled as O2 in (8b)) or H-O* preclude CH₃• stabilization at the transition state, in contrast with the strong Pd-CH₃ bonds at C-H activation transition states on uncovered surfaces (5b); as a result, activation barriers are much larger on O*-O* site pairs (145 kJ mol⁻¹) than *-* site pairs (73 kJ mol⁻¹). The transition-state structures for the activation of methane on O*-O* sites at 0.67 ML O*-covered Pd(111) surfaces [(8b), in Figure 8b] are nearly identical to those on 1 ML O*-covered Pd₂₀₁ clusters [(7c), in Figure 7c]. The activation barriers were within 4 kJ mol⁻¹ for the two structures (145 and 141 kJ mol⁻¹ for the cases of 2/3 ML O*- Figure 10. Born—Haber thermochemical cycle analysis (eq 2) of the activation enthalpies ($\Delta E_{C-H, O^*/Pd}$) for C–H bond activation steps over O*–O* site pairs (labeled O_1-O_2) (CH₄ + O* + O* \rightarrow CH₃O* + OH*) on 0.67 ML O* covered Pd (111) surfaces. Blue: Pd atom, red: O atom, gray: C atom, white: H atom. Enthalpy values are given in kJ mol⁻¹. Table 2. DFT-Calculated Interaction Energies of C-H Bond Activation Transition-State Complexes and Adsorption Energies of H Radicals on Chemisorbed or Lattice Oxygen Atoms at O*/Pd(111), PdO(101), and PdO(100) Surfaces | | $\begin{array}{c} {\rm interaction~energy} \Delta E_{{\rm O^*-H}}{}^{a,b} \\ {\rm (kJ~mol^{-1})} \end{array}$ | interaction energy $\Delta E_{\mathrm{OH^*-^{\bullet}CH_3}}{}^{c,b}$ (kJ mol $^{-1}$) | interaction energy $\Delta E_{\mathrm{CH_3-O^*/Pd}}{}^{d,b}$ (kJ mol $^{-1}$) | adsorption energy $\Delta E_{\mathrm{OH^*-O^*}}^e$ (kJ mol $^{-1}$) |
------------|---|--|--|---| | O*/Pd(111) | -312 | -6 | +22 | -321 | | | interaction energy $\Delta E_{\mathrm{O}_{\mathrm{cx}}-\mathrm{H}}{}^{f,b}$ (kJ mol $^{-1}$) | interaction energy $\Delta E_{ ext{Pd}_{ox}- ext{CH}_3}^{}g,b}$ (kJ mol $^{-1}$) | interaction energy $\Delta E_{\mathrm{CH_3-PdO}}{}^{d,b}$ (kJ mol $^{-1}$) | adsorption energy $\Delta E_{\mathrm{O}_{\mathrm{ox}}\mathrm{H-O}_{\mathrm{ox}}}^{ \ \ h}$ (kJ mol $^{-1}$) | | PdO(101) | -164 | -238 | -125 | -299 | | PdO(100) | -198 | -135 | -92 | _ | "Interaction energy between gas-phase H radicals and O* atoms. ^bIn the transition-state geometries. ^cInteraction energy between the CH₃ fragments and surfaces (including the H leaving group bound to the vicinal O*); ^dInteraction energy between the CH₃ fragments and the surfaces (with H from the cleaved C-H bond removed from the surfaces); ^eDifference in OH* and O* adsorption energies. ^fInteraction energy between gas-phase H radicals and O_{ox} atoms. ^gInteraction energy between the CH₃ fragments and surfaces (including the H leaving group binds to the vicinal O_{ox}). ^hDifference in O_{ox}H and O_{ox} adsorption energies. covered Pd(111) surface and 1 ML O*-saturated Pd₂₀₁ cluster, respectively, Table 1). Figure 9 shows the charges in CH₃, H, O (oxygen atoms O₁ and O_2 , labeled in Figure 8), and Pd (Pd atoms Pd_i , i = 1-5, labeled in Figure 8) species along the reaction coordinate for C-H bond activation on O*-O* site pairs. This C-H bond activation step proceeds via H-abstraction of methane by O* (labeled O₁ in Figure 8) and concerted electron transfer from the H atom leaving group to the O*, through a late transition state lacking one C-H bond in the CH₄ reactant (0.170 nm bond length, structure (8b)). The charge at the H-atom increases from +0.071 in reactants to +0.550 at the (O*... CH₃•···*OH)[‡] transition state, while that at O₁ (as labeled in Figure 8) becomes more negative (-0.605 to -0.923). The electron transfer occurs just before the transition state, as shown by charges on the leaving H (+0.550) and O₁ (-0.923,atom O₁ in Figure 8) atoms at the transition state, which are more similar to those in OH^* products (+0.673 and -0.943 for H and O₁, respectively, image 6 of Figure 9) than in the H and O_1 atoms in the reactant state (+0.071 and -0.605 for H and O₁, respectively, image 1 of Figure 9). The CH₃ species are essentially uncharged at the transition state (+0.133) but become cationic (+0.572) in the *OCH₃ products. The charge transferred from H $^{\bullet}$ to O* (O₁ in Figure 8) is localized at the vicinal Pd₂ and Pd₄ centers (in Figure 8), whose valences decrease from +0.401 and +0.432 in the reactant state (image 1, Figure 9) to +0.280 and +0.365, respectively, at the transition state (image 3, Figure 9). The charge transfer from CH₃ $^{\bullet}$ to the vicinal O* (O₂ in Figure 8) does not occur until very late along the reaction coordinate and is localized on the Pd₃ and Pd₅ (as shown in Figure 8) whose valences decrease from +0.443 and +0.420 in the reactant state to +0.237 and +0.396 in the product state, respectively. Such C–H activation paths and the radical-like alkyl fragments (8b) at their transition states have been proposed for C–H bond activation of CH₄ on O* saturated Pt(111) surfaces and cuboctahedral 201-atom Pt clusters ¹⁰ and for C–H activation of larger alkanes on reducible oxides (VO_x). ^{44,45} C–H activation barriers on O*–O* pairs ($\Delta E_{\mathrm{C-H,O^*/Pd}}$) can be dissected into energies for a sequence of hypothetical steps using Born–Haber thermochemical cycles (Figure 10; Table 2), which exploit the path-independence of thermodynamic state functions. These steps include homolytic C–H bond cleavage of gaseous CH₄ (BDE) as well as reactions of O* (labeled O₁ in Figure 8) with gaseous H-radicals ($\Delta E_{\mathrm{O^*-H}}$) and of a vicinal O* (labeled O₂ in Figure 8) with a CH₃• radical Figure 11. DFT calculated structures of reactant (11a), transition (11b), and product (11c) states and energy changes (kJ mol⁻¹) for C–H bond activation steps on nonstoichiometric $Pd_{ox}-O_{ox}$ site pairs (labeled $Pd^1_{ox,1}-O^1_{ox}$) ($CH_4+Pd_{ox}+O_{ox}\to CH_3Pd_{ox}+O_{ox}H$) at PdO (100) surfaces. Similarly, the calculated energies and optimized reactant (11d), transition (11e), and product (11f) states for C–H bond activation steps on stoichiometric $Pd_{ox}-O_{ox}$ site pairs (labeled $Pd^2_{ox,1}-O^1_{ox}$) at the PdO(101) surface are shown in (11d), (11e), and (11f), respectively. Blue: Pd atom, red: O atom, gray: C atom, white: H atom. Bond distances are given in nanometer. $(\Delta E_{\text{OH}^*-^{\bullet}\text{CH}_3})$, leading to an activation barrier $(\Delta E_{\text{C-H,O}^*/\text{Pd}})$ given by the sum of their respective reaction energies: $$\Delta E_{\text{C-H,O*/Pd}} = \text{BDE} + \Delta E_{\text{O*-H}} + \Delta E_{\text{OH*-}\bullet\text{CH}_3}$$ (2) CH3 interactions with O*-covered surfaces are weak at the transition state ($\Delta E_{\text{OH}^*-^{\bullet}\text{CH}_3} = -6 \text{ kJ mol}^{-1}$) and CH_3^{\bullet} species remain distant from O* (labeled O2 in structure (8b) of Figure 8, H₃C•···O* distance of 0.258 nm). Thus, activation barriers are sensitive only to interactions between H-radicals (the leaving group) and O* atoms ($\Delta E_{O^*-H} = -312 \text{ kJ mol}^{-1}$), which is similar to the OH* formation energies, defined as the difference between the energy of OH* products and the combined energy of the O* and gaseous H* (at noninteracting distances, $\Delta E_{OH^*-O^*} = -321$ kJ mol⁻¹, Table 2) and equaled the difference in the heats of OH* and O* adsorption and also the oxygen basicity. The similar values of $\Delta E_{\text{O*-H}}$ (at transition states; -312 kJ mol^{-1}) and $\Delta E_{\text{OH}^*-\text{O}^*}$ (in product configurations; -321 kJ mol^{-1}) reflect the nearly fully formed O···H* bonds at these transition states. The reaction proceeds via a Habstraction by O* together with a concerted electron transfer from the hydrogen to the O* thus resulting in a nearly fully formed O-H bond in the transition state along with a weakly interacting CH3 free radical-like intermediate. We conclude that C-H activation barriers depend sensitively on the basic character of the chemisorbed O*, found for the case on O*-O* pairs and similar to that found for metal atom-oxygen pairs, as shown from the linear relation between the barriers and heats of atomic oxygen adsorption on $Pt(111)^{10}$ and Pd(111) (Supporting Information, Section 2, Figure S2c) surfaces. The trend of higher oxygen basicity, found in weakly adsorbed oxygen prevalent at high O* coverages, with lower barriers is ubiquitous for C–H bond activation and consistent with previous findings of oxygen atoms acting as Brønsted bases in the dissociation of acidic C–H bonds⁴⁶ [in (CH₃)₂CO].⁴⁷ 3.3. Mechanistic Interpretations and Theoretical Treatments of C–H Bond Activation Steps on Pd_{ox} – O_{ox} Site Pairs at PdO Surfaces and PdO ($Pd_{94}O_{89}$) Clusters. Here, we first examine C–H activation steps on extended PdO(100) and PdO(101) surfaces and then on PdO ($Pd_{94}O_{89}$) clusters. The C–H activation transition states are stabilized on these structures by four-center interactions between the Pd^{2+} , $CH_3^{\delta-}$, $H^{\delta+}$, and O^{2-} . The four-center concerted nature of these interactions ($H^{\delta+}$ with O^{2-} , O^{2-} with Pd^{2+} , Pd^{2+} with $CH_3^{\delta-}$, and $CH_3^{\delta-}$ with $H^{\delta+}$) leads to activation barriers much smaller than on O^* – O^* pairs and to the sharp increase in CH_4 – O_2 reaction rates observed as Pd–PdO phase transitions occur. Clusters and extended surfaces of PdO predominantly expose low-energy PdO(100) and PdO(101) facets containing Pd²⁺ centers (Pd_{ox}) assembled in rows. On both surfaces, Pd centers lie between rows of O²⁻ atoms (O_{ox}) (Figure 1c,d, respectively) but with surface Pd:O stoichiometries of 1:2 on PdO(100) and 1:1 on PdO(101). Exposed Pd_{ox} centers can interact with the C-atom in CH₄, even without the presence of O-vacancies, on both surfaces, while H-atoms are abstracted by vicinal O_{ox} atoms. CH₃ interactions with Pd centers are, however, not possible on O*-saturated Pd surfaces, because of their dense and impervious O* adlayer (Section 3.2), which are absent on the corrugated surfaces of PdO(100) and PdO(101). C-H bond activation barriers were calculated over the nonstoichiometric Pd1 ox,1-O1 site pairs on the PdO(100) surface (in Figure 1c) and stoichiometric Pd²_{ox,1}-O¹_{ox} site pairs on the PdO(101) surface (in Figure 1d). As discussed in Section 2.3, the O_{ox}^2 centers that are also present on PdO(101) are inaccessible as they coordinate to 4 Pd centers as shown in Figure 1d. As such, the Pd¹_{ox,1}-O²_{ox} and Pd²_{ox,1}-O²_{ox} site pairs on the PdO(101) surface were not examined. The $Pd_{ox,1}^1 - O_{ox}^1$ sites on the PdO(101) surface were also not examined as they are identical to those on PdO(100). The optimized structures of the reactant, transition, and product states on nonstoichiometric $Pd^1_{ox,1}-O^1_{ox}$ site pairs on PdO(100) are shown in Figures 11a-c. The transition state (11b) is remarkably similar to that for C-H activation on Pd atomoxygen (*-O*) site pairs on O*-covered Pd(111) surfaces (S2a.ii) (Section 3.2) with C-H, O-H, and Pd-C bond distances that differ by <0.002 nm for the two transition-state structures. The Pd-H bond at the transition state is, however, shorter on
PdO(100) (0.197 nm) than on *-O* sites on Pd(111) (0.214 nm), consistent with the more effective stabilization of the H-atom at PdO(100) surfaces. In spite of the similar geometries and bond distances between the two transition states [(11b) and (S2a.ii)], the C-H activation barrier on PdO(100) (131 kJ mol⁻¹) is higher than that on *-O* sites at Pd(111) surfaces with 0.67 ML O* (117 kJ mol⁻¹). The difference is caused by electronic differences between the O*-covered metals and metal oxides and by the concomitant differences in charge at the various atoms involved in each transition state. PdO(100) surfaces are more stable than PdO(101) surfaces, but they are less active for C-H bond activation. 48 The DFTderived C-H bond activation barriers on the nonstoichiometric Pd¹_{ox.1}-O¹_{ox} site pairs on PdO(100) are about 2-fold higher than on stoichiometric Pd²_{ox.1}-O¹_{ox} sites on PdO(101) (131 vs 62 kJ mol⁻¹), consistent with reported values [104, ⁴⁹ 154, ⁵⁰ and 118 kJ mol^{-1 48} on PdO(100) and 64 kJ mol^{-1 51} on PdO(101)]. The low activation barrier on PdO(101) calculated here (62 kJ mol⁻¹) is nearly identical to our measured barrier (61 kJ mol⁻¹) on PdO clusters (Table 1). The higher calculated barriers on PdO(100) reflect the weaker interaction between the Pdox centers (Pd1 ox,1 in Figure 11a-c) and the CH3 fragments in the transition state compared with that of Pdox (Pd²_{ox.1} in Figure 11d-f) at the transition state that mediate C-H activation on PdO(101) surfaces, a conclusion evident from the structures, energies, and charges of the transition state and along the reaction coordinate (Section 3.4) We focus most of the detailed discussion herein on the more active PdO(101) surface (Figure 1d) but will return to the comparison of the PdO(100) and PdO(101) surfaces in Section 3.4. The structures of reactants, transition states, and products in C–H bond activation steps on $Pd_{ox}-O_{ox}$ pairs $(Pd^2_{ox,1}-O^1_{ox}$ in Figure 1d) over the PdO(101) surface are shown in Figure 11 (structures (11d–f), respectively). The active Pd_{ox} atoms $(Pd^2_{ox,1}$ in Figure 11d–f) exposed at PdO(101) surfaces oxidatively insert into a C–H bond of CH₄ while vicinal O_{ox} (O^1_{ox} in Figure 11d–f) species concurrently abstract the H atom to form four-center transition states $(H_3C^{\delta-}\cdots Pd_{ox}\cdots H^{\delta+}\cdots O_{ox})^{\ddagger}$ (11e), in pathways reminiscent of σ -bond metathesis^{36,52,53} or oxidative hydrogen migration⁵⁴ in organometallic complexes, which are also mediated by four-center transition states. The stabilization of the $CH_3^{\delta-}$ and $H^{\delta+}$ fragments that form in the transition state leads to an activation barrier of 62 kJ mol⁻¹. The calculations for the C-H bond activation of CH4 on the stoichiometric Pd_{ox}-O_{ox} sites (labeled Pd²_{ox,1}-O¹_{ox} in Figure 7d) on the (101) surface of Pd₉₄O₈₉ clusters (Figure 2b) gave very similar transition-state structures ((7d), Figure 7d) and activation energies (61 kJ mol⁻¹) as on PdO(101) surfaces ((11e), Figure 11e; 62 kJ mol⁻¹). Alternate C-H activation routes assisted by Oox-Oox site-pairs (labeled Oox-Oox in Figure 1d) at PdO(101) surfaces require activation energies much higher than on Pd_{ox}-O_{ox} site-pair (Pd²_{ox,1}-O¹_{ox} in Figure 11d-f) [196 vs 62 kJ mol⁻¹]; the values are even higher than those found on O*-O* pairs on O*-saturated Pd⁰ surfaces (145 kJ mol⁻¹, Section 3.2). Consequently, O_{ox}-O_{ox} pairs are much less reactive than Pdox -Oox pairs for C-H bond activation on PdO surfaces. We conclude that C–H activation on the active PdO(101) surfaces involves Pdox-Oox site pairs and proceeds via oxidative addition of coordinatively saturated Pdox (Pd2ox,1 in Figure 11d-f) into the C-H bond and simultaneous H-abstraction by vicinal O_{ox} (O¹_{ox} in Figure 11d-f) species. The CH₃^δ fragment is stabilized by the Pd2+ center (Pd2ox,1····CH3 bond distances are 0.223 nm at the transition state (11e) vs 0.203 nm in the product state, (11f), Figure 11) and also by residual bonding and Coulombic interactions with the $H^{\delta+}$ atom in CH_4 as the latter incipiently binds to O_{ox} (C-H bond distances are 0.138 nm at the transition state vs 0.109 nm in $CH_4(g)$). The $H^{\delta +}$ atom at the transition state (11e) is stabilized not only by $CH_3^{\delta-}-H^{\delta+}$ (0.138 nm) and $Pd_{ox}-H^{\delta+}$ (0.187 nm) interactions but also by the formation of strong O_{ox} -H^{δ +} bonds (0.128 vs 0.098 nm in OH products, Figure 11, structure (11f)). H₃C···H bonds are shorter (0.138 vs 0.155 nm) and Pd···CH₃ and Pd··· H bonds are longer (0.223 vs 0.219 nm and 0.187 vs 0.169 nm, respectively) than in the transition state for CH₄ activation on Pd(111) surfaces ((5b), Figure 5), consistent with an earlier transition state on PdO(101) than on Pd(111) surfaces. These conclusions are consistent with precedents from organometallic complexes $(Ir(PH_3)_2H_1^{37} W(OH)_2(=NH)^{55})$, on which C-H bonds are activated via oxidative addition and σ -bond metathesis routes, respectively, ^{37,55} but in the latter case, organic ligands [e.g. NH in W(OH)₂(=NH)⁵⁵] instead of O_{ox} atoms stabilize transition states. In oxidative addition routes, bond distances for C···H and M···CH₃ (M denotes metal) at transition states are similar on Ir(PH₃)₂H³⁷ and Pd(111) (C-H bond distances of 0.155 nm in both systems and M···CH₃ distances of 0.223 and 0.219 nm for Ir(PH₃)₂H and Pd(111), respectively). M···H bond distances were also similar at 0.160 and 0.169 nm on Ir(PH₃)₂H³⁷ and Pd(111), respectively. For the σ -bond metathesis pathway, C···H and $M \cdots CH_3$ bond distances on $W(OH)_2(=NH)^{55}$ complexes were found to be similar to those on PdO(101) surfaces (Figure 11, structure (11e)). C.-.H bonds were 0.147 nm on W(OH)₂(=NH)⁵⁵ and 0.138 nm on PdO(101) surfaces and $M\cdots CH_3$ bonds were slightly shorter on $W(OH)_2(=NH)$ complexes $(0.223~nm)^{55}$ than on PdO(101) (0.236 nm). The M...H bond lengths are also similar for σ -bond metathesis transition states on $W(OH)_2(=NH)$ complexes⁵⁵ (0.186 nm) and on PdO (0.187 nm; (11e)) but shorter than at oxidative addition transition states, because H leaving groups in σ -bond Figure 12. The change in Bader charges on $Pd^2_{ox,1}$ (purple diamonds), $Pd^1_{ox,2}$ (green squares), and $Pd^1_{ox,3}$ (orange triangles) atoms in the PdO(101) surface, dissociated H (blue diamonds), and CH_3 (maroon circles) fragments, active O^1_{ox} (red triangles) species, and the reaction energy (black triangles) along the reaction coordinate during C-H bond activation of methane over $Pd_{ox}-O_{ox}$ site pair (labeled $Pd^2_{ox,1}-O^1_{ox}$) on the PdO(101) surface. The reaction coordinate is reported by the NEB images and the C-H bond distance between the reactant (image 1), transition state (highest energy, image 5), and product (image 6). The $Pd^2_{ox,1}$, $Pd^1_{ox,2}$, $Pd^1_{ox,3}$, O^1_{ox} sites are labeled in Figure $Pd^1_{ox,1}$. Figure 13. Born—Haber thermochemical cycle analysis (eq 3) constructed for the activation enthalpies ($\Delta E_{C-H,PdO}$) of C–H bond activation steps on Pd_{ox} – O_{ox} site pairs (labeled $Pd^2_{ox,1}$ – O^1_{ox}) (CH₄ + Pd_{ox} + O_{ox} \rightarrow CH₃Pd_{ox} + O_{ox} H) at PdO (101) surfaces. Blue: Pd atom, red: O atom, gray: C atom, white: H atom. Enthalpy values are given in kJ mol⁻¹. metathesis routes are stabilized by both metal centers and ligands (NH in $W(OH)_2(=NH)$ and O_{ox} in PdO) and their transition states occur earlier along the reaction coordinate. These bond distances and transition-state structures clearly illustrate the mechanistic connections between C–H activation in organometallic complexes and in metal and oxide surfaces. On both systems, the metal atom acts as the sole nucleophile and electrophile and as the ultimate binding site for both the CH₃ and H fragments during oxidative addition. For the case of the metal–ligand pair (Pd_{ox}–O_{ox} on PdO, Pd–oxygen (*–O*) on O* covered Pd⁰ surfaces, W and NH in $W(OH)_2(=NH)^{55}$), the metal acts as the nucleophile and the metal–ligand pair as the electrophile and the ultimate binding sites for the CH₃ and H fragments during σ -bond metathesis. Figure 12 shows the evolution of charges in Pd_{ox} and O_{ox} sites and in CH_3 and H fragments along the reaction coordinate. C–H dissociation proceeds via electron donation from the C-atom in CH₄ to the Pd_{ox} (Pd atom labeled "Pd²_{ox,1}" in Figure 11d–f) with concurrent backdonation from the Pd_{ox} into the C–H bond, without concurrent changes in the valence of Pd_{ox} centers. These early transition states result in a 0.138 nm C–H bond formed via heterolytic processes, in which the CH₃^{δ -} and H^{δ +} fragments are stabilized by Pd²⁺ and O²⁻, respectively. The charge in the H-atom at the transition state (+0.411) is smaller than in the H of the OH* product (+0.670) or than in the transition state on O*–O* sites on 0.67 ML O* covered Pd(111) surfaces (+0.551, Figure 9). The negative charge in the CH₃ fragment at the transition state on PdO(101) (–0.148) reflects either direct heterolytic C–H splitting of the C–H bond along the reaction coordinate or concerted charge transfer within (H₃C $^{\delta}$ -····Pd_{ox}····H $^{\delta+}$ ····O_{ox})[‡] complexes and stabilization of H₃C $^{\delta-}$ and H $^{\delta+}$ fragments by concerted Table 3. Comparison of the Bader Charges on the Pd, C, O, and H Atoms As the Reaction Proceeds from the Reactant to the Transition State and to the Product State for the C-H Bond Activation of Methane on the $Pd_{ox}-O_{ox}$ Site Pairs on the PdO(101) ($Pd^2_{ox,1}-O^1_{ox}$ sites in Figure 1d) and PdO(100) ($Pd^1_{ox,1}-O^1_{ox}$ sites in Figure 1c) Surfaces and on the Pd-O site Pairs on the 2/3 ML O*-Covered Pd(111) Surfaces (Pd-O sites in Figure 1b) | | PdO(101) | | | PdO(100) | | | 2/3 ML
O*/Pd(111) | | | |------|----------|------------------|---------|----------|------------------|---------|-------------------|------------------|---------| | atom | reactant | transition state | product | reactant | transition state | product | reactant | transition state | product | | Pd | +0.630 | +0.644 | +0.609 | +0.880 | +0.973 | +1.022 | +0.396 | +0.620 | +0.597 | | O | -0.744 | -0.851 | -1.112 | -0.707 | -0.827 | -1.019 | -0.592 | -0.752 | -0.995 | | C | -0.251 | -0.455 | -0.120 | -0.160 | -0.456 | -0.240 | -0.068 | -0.489 | -0.236 | | Н | +0.083 | +0.411 | +0.726 | +0.082 | +0.403 | +0.653 | +0.038 | +0.368 | +0.628 | interactions with Pd^{2+} and $H^{\delta+}$. The stabilization contrasts sharply the weak interactions between CH₃ and O* prevalent in the transition state for homolytic C-H activation on O*-O* pairs on Pd(111) surfaces (structure (8b), Figure 8). The extent of charge stabilization in these transition states differs: the CH₃ group in the transition state over PdO(101) is negatively charged (-0.148) and thus strongly interacts via Coulombic interactions with the positively charged Pd (+0.644) and H (+0.411) whereas the CH₃ group that forms in the transition state over O*-covered Pd(111) surfaces (5b) takes on free radical character with a charge of +0.13 and as such only weakly interacts with the resulting proton (with a charge of +0.55) that binds to O*. These effects of charge stabilization and structures at the transition state both influence the free energy of the transition state and, in turn, the activation barriers. A Born–Haber thermochemical analysis allows C–H bond activation barriers ($\Delta E_{\rm C-H,PdO}$) of methane on the stoichiometric ${\rm Pd_{ox}-O_{ox}}$ sites (labeled ${\rm Pd_{ox,1}^2-O_{ox}^1}$ in Figure 13a–c) at PdO(101) surfaces to be dissected into the energies of hypothetical steps, as shown in Figure 13, involving (i) homolytic C–H bond dissociation (BDE) of CH₄(g) into CH₃° and H° radicals (463 kJ mol $^{-1}$), (ii) the binding of CH $_{3}$ ° on Pd $_{0x}$ ($\Delta E_{\rm Pd_{ox}-CH_{3}}=-238$ kJ mol $^{-1}$), and (iii) the binding of H° on O $_{0x}$ ($\Delta E_{\rm O_{ox}-H}=-164$ kJ mol $^{-1}$) at PdO surfaces: $$\Delta E_{\text{C-H,PdO}} = \text{BDE} + \Delta E_{\text{Pd}_{\text{ox}} - \text{CH}_3} + \Delta E_{\text{O}_{\text{ox}} - \text{H}}$$ (3) The stabilization of the CH₃ group by Pd_{ox} and through its residual bonding to H gives a binding energy $\Delta E_{\mathrm{Pd}_{xx}-\mathrm{CH}_{x}}$ of -238 kJ mol⁻¹ and a bond that is much stronger than for the CH₃ fragment on PdO(101) surfaces without concerted interactions with the vicinal H-atom ($\Delta E_{\text{CH,-PdO}} = -125 \text{ kJ}$ mol⁻¹, Table 2), as a result of electrostatic interactions between $H^{\delta+}$ and $CH_3^{\delta-}$ (Bader charges of +0.411 and -0.148, respectively, at the transition state, Figure 12). Such stabilization is evident from $(H_3C^{\delta-}\cdots Pd_{ox}\cdots H^{\delta+}\cdots O_{ox})^{\ddagger}$ transcalar sition states with a C-H bond distance (0.138 nm) much shorter than for C-H activation transition states on O*-O* or *-* site pairs (0.170 and 0.155 nm, respectively, Section 3.2). These strong interactions among O_{ox}, Pd_{ox}, C, and H atoms lead to tight transition states with fewer degrees of freedom and lower translational and rotational entropies than the transition states for C-H bond activation on O*-O* and *-* sites. 3.4. Comparison of C–H Bond Activation of Methane Over Pd–O Site Pairs on O*-Covered Pd, PdO(100), and PdO(101) Surfaces. The transition-state structures for CH₄ activation on Pd and oxygen site pairs (*–O* or Pd_{ox}–O_{ox}) on O*-covered Pd(111) (2/3 ML O*, Figure S2a, (S2a.ii)), PdO(100) (the Pd¹_{ox,1}–O¹_{ox} sites in Figure 11, (11b)), and PdO(101) (Pd²_{ox,1}–O¹_{ox} sites in Figure 11, (11e)) show that C-H activation occurs via mechanisms with common rearrangements reminiscent of σ -bond metathesis, but exhibiting subtle features responsible for their very different reactivities. C-H bond lengths in these three transition states [(S2a.ii), (11b), (11e)] are very similar (0.136-0.138 nm) and much shorter than in the transition states for the oxidative addition path (Figure 5, (5b), 0.155 nm). O-H bond lengths in the three transition-state structures are also small and similar (0.128-0.131 nm), consistent with O*-assisted C-H bond cleavage. Pd-CH3 and Pd-H bonds are 0.009 and 0.027 nm shorter, respectively, on PdO(101) surfaces compared with those on O*-covered Pd(111), and both are \sim 0.010 nm shorter on the PdO(101) than those on PdO(100). These differences reflect repulsive interactions between CH3 groups and vicinal O* on O*-covered Pd(111) and on PdO(100) surfaces as well as electronic interactions from the overoxidized (with structures resembling PdO₂, as described in Section 2.3) character of the nonstoichiometric PdO(100) surfaces. A Born-Haber thermochemical cycle is used next to examine the different activation barriers on PdO(100) and PdO(101) surfaces (Table 2) and the charges in reactant, transition, and product states (Table 3). These results show that H-atom interactions with oxygen (O_{ox}) at the transition state are 34 kJ mol⁻¹ stronger on PdO(100) than on PdO(101) $(\Delta E_{O_{\infty}-H} = -198 \text{ vs } -164 \text{ kJ mol}^{-1})$, but CH₃ binding is much weaker ($\Delta E_{\mathrm{Pd}_{ox}-\mathrm{CH}_3} = -135 \text{ vs } -238 \text{ kJ mol}^{-1}$). The weaker CH₃ binding is consistent with the longer Pd-CH₃ bonds on PdO(100) than on PdO(101) and with the weaker covalent character of the Pd-C bond on PdO(100). Previous studies have also shown that other species (e.g., H₂O) also bind on PdO(101) more strongly than on PdO(100). 24 Pd2+ centers in PdO(101) are formally 4d⁸ cations that can form bonds with significant covalent character, ²⁴ thus allowing strong interactions with CH₄ and with the CH₃ and H fragments at the transition state. Table 3 shows that Pd_{ox} centers in PdO(100) are more positive than on PdO(101) in reactant, product, and transition states. These Pdox centers become even more positive in moving from reactants (+0.880) to transition states (+0.973), as electron density is transferred out of the surface and into the C-H bond. In contrast, the charge of Pd_{ox} centers (Pd²_{ox} sites in Figure 1d) in PdO(101) remains essentially constant along the reaction coordinate (+0.630, reactant; +0.644, transition state). These findings suggest that stoichiometric $Pd^{2+}-O^{2-}$ sites $(Pd^2_{ox,1}-O^1_{ox}$ in Figure 1d) on PdO(101) provide the most effective acid–base pairs for heterolytic C–H activation, without concomitant charge transfer to the Pd_{ox} or O_{ox} species in the oxide. This process forms strong $Pd\cdots CH_3$ and $O\cdots H$ interactions at the transition state. The balanced acid–base pairs of moderate strength in PdO(101) leads to facile heterolytic bond cleavage, as proposed in the seminal work by Tanabe. 56,57 The higher barriers on PdO(100) reflect a requirement for charge transfer from Pd_{ox} into C–H bonds. Surfaces of PdO(100) are nonstoichiometric and resemble PdO₂, 50 consistent with the higher Pd_{ox} oxidation state in PdO(100) than in stoichiometric PdO(101) surfaces (+0.880 vs +0.630, Table 3). This leads to more basic O atoms but much weaker Pd–CH₃ interactions at the transition state and, as a result, to higher barriers on the more coordinatively saturated Pd–O sites on PdO(100) surfaces. Based on these results, C–H bond activation rate constants are estimated to be >10³ larger on PdO(101) than PdO(100) surfaces at 873 K (assuming similar activation entropies). 3.5. Comparison of the Diverse C–H Bond Activation Pathways of Oxidative Addition, H-Abstraction, and σ -Bond Metathesis during Methane Oxidation on Uncovered Pd Metal, O*-Covered Pd Metal, and PdO Surfaces. Here, we compare measured and calculated activation enthalpies (ΔH^{\ddagger}) and entropies (ΔS^{\ddagger}) , defined as their respective differences between the C–H activation transition states and gaseous CH₄, on Pd metal, O*-saturated Pd metal, and PdO cluster surfaces. These parameters define the activation free energies (ΔG^{\ddagger}) within the framework of transition-state theory and are related to the C–H bond activation rate constant $(k_{\rm C-H})$ according to $$k_{\rm C-H} = \frac{k_{\rm B}T}{\hbar} \exp\left(-\frac{\Delta G^{\ddagger}}{RT}\right) = \frac{k_{\rm B}T}{\hbar} \exp\left(-\frac{\Delta H^{\ddagger}}{RT} + \frac{\Delta S^{\ddagger}}{R}\right)$$ (4) Here, $k_{\rm B}$ denotes the Boltzmann constant, \hbar the Planck constant, and T the temperature. C–H activation rate constants were measured on O^*-O^* and $Pd_{ox}-O_{ox}$ site pairs at 813-973 K on PdO and O^* saturated Pd clusters (21.3 nm diameter); they are shown in Figure 14 together with those for reactions of CH_4-H_2O/CO_2 mixtures on $^*-^*$ site pairs on bare Pd 0 clusters (12.5 nm mean diameter). Activation enthalpies and entropies (by regression of C–H activation rate constants to the functional form of eq 4) are shown in Table 1 (and plotted in Figure 15) together with DFT-derived activation barriers. Measured barriers are much higher on O*-saturated Pd⁰ surfaces (158 kJ mol⁻¹) than on bare Pd metal or PdO surfaces (Pd⁰: 84 kJ mol⁻¹,³² PdO: 61 kJ mol⁻¹), as also found by DFT methods (2/3 ML O* Pd(111): 145 kJ mol⁻¹, Pd(111): 73 kJ mol⁻¹, Pd²_{ox,1}–O¹_{ox} sites on PdO(101): 62 kJ mol⁻¹). The transition states on O*-O* pairs, (O*...CH₃•...*OH)[‡] (8b), involve essentially unbound radical-like CH₃• fragments. In contrast, CH₃ and H fragments are both stabilized by their strong concerted interactions with Pd centers in the oxidative addition transition state, (H₃C...Pd...H)[‡] (5b), on Pd⁰ and in the σ-bond metathesis transition state, (H₃Cδ-...Pd_{ox}...Hδ+... O_{ox})[‡] (11e), on PdO(101) surfaces. The absence of O*...H interaction in
(H₃C...Pd...H)[‡] (5b) transition states leads to higher C–H activation barriers [DFT: 73 kJ mol⁻¹ on Pd(111) vs 62 kJ mol⁻¹ on PdO(101), experimental: 84 kJ mol⁻¹ (Pd⁰) vs 61 kJ mol⁻¹ (PdO), Table 1] and smaller measured rate constants on Pd⁰ than on PdO catalysts (Figure 14). The bond energies and distances between the oxygen and the leaving hydrogen in transition states and products reflect the extent of oxygen involvement in C–H bond activation on O*-covered Pd⁰ and PdO surfaces. O–H bond lengths at the H-abstraction transition states, $(O^* \cdots CH_3^* \cdots * CH)^{\ddagger}$ (8b), Figure 14. Temperature dependence of C−H bond activation rate constants on bare Pd metal clusters (\spadesuit), O* saturated Pd metal clusters (\spadesuit), and PdO clusters (\blacksquare). (\spadesuit , \blacksquare : 0.2 % wt Pd/Al₂O₃; 21.3 nm mean Pd cluster diameter determined at the metallic state). PdO (\blacksquare): 4.85 kPa CH₄, 72 kPa O₂, space velocity 3.92 × 10⁹ cm³ (s mol Pd_{surface})⁻¹, 200 SiO₂/catalyst intraparticle dilution ratio, 1200 quartz/catalyst bed dilution ratio; oxygen saturated Pd metal (\spadesuit): rate data were taken from ref 9, 4.85 kPa CH₄, 1.2−1.6 kPa O₂, space velocity 9.40 × 10⁸ cm³ (s mol Pd_{surface})⁻¹, 200 SiO₂/catalyst intraparticle dilution ratio, 280 quartz/catalyst bed dilution ratio; Pd metal (\spadesuit): rate data were taken from ref 32, which were measured on Pd clusters of 12.5 nm mean diameter supported on ZrO₂ (1.6 % wt Pd/ZrO₂)). Figure 15. Correlation of the measured activation entropies and the measured $(\blacklozenge, \blacktriangle, \blacksquare)$ or DFT-derived $(\diamondsuit, \Delta, \square)$ activation barriers for C–H bond activation in CH₄ on Pd metal (\blacktriangle, Δ) , O*-covered Pd metal $(\blacklozenge, \diamondsuit)$, and PdO (\blacksquare, \square) . Kinetic parameters for Pd metal are derived from rate data reported in ref 32 and for O*-covered Pd metal and PdO are derived from the rate data in Figure 14. resemble those of the hydroxyls in the products (0.104 vs 0.102 nm on O*-covered Pd^0) and are shorter than those at the σ -bond metathesis transition state $[(H_3C^{\delta-}\cdots Pd_{ox}\cdots H^{\delta+}\cdots O_{ox})^{\ddagger}$ (11e), 0.128 nm at the transition state and 0.098 nm in the product, on PdO(101)]. These results indicate that the enthalpy at the transition state is largely determined by the affinity of the O-atoms for H-atoms for the H-abstraction path and less so for the σ -bond metathesis path. This affinity of oxygen for H reflects the basicity of oxygen and is given by the energy differences between $O_{ox}H$ and O_{ox} on PdO surfaces $(\Delta E_{\mathrm{O_{co}H-O_{co}}})$ and between OH* and O* on O*-saturated Pd⁰ surfaces $(\Delta E_{\mathrm{OH^*-O^*}})$ at their stable structures and for the cases of oxygen adsorption energy $[\mathrm{O_{ox}}]$ at PdO and O* at O* saturated Pd⁰ surfaces], with H• at noninteracting distances. The interaction energies $(\Delta E_{\mathrm{O_{co}H-O_{co}}})$ are slightly less negative on PdO(101) than on O*-saturated Pd(111) surfaces (-299 vs -321 kJ mol⁻¹, Table 2). These results suggest that the O_{ox}-H bonds (in the absence of the CH₃) are weaker than the O*-H bonds, thus, O_{ox} species on PdO(101) are less effective than O*-atoms at Pd⁰ surfaces for H-abstraction. The lower H-abstraction reactivity on PdO surfaces is compensated by the strong Pd_{ox}····CH₃ interactions at the transition state compared with those on O*-saturated Pd⁰ surfaces, for which the CH₃ moieties are essentially at noninteracting distances from the O* species (0.258 nm). Figure 15 shows measured activation energies and entropies on Pd⁰, O* covered Pd⁰, and PdO clusters as well as DFTderived C-H bond activation barriers on Pd(111), O* saturated Pd(111), and PdO(101) surfaces. Entropy losses were largest on bulk PdO and smallest on O* saturated Pd⁰ (-134 and -57 J mol⁻¹ K⁻¹, respectively, Table 1). Measured activation entropies for the $(O^* \cdots CH_3^{\bullet} \cdots *OH)^{\dagger}$ (8b) transition state on O*-O* pairs (-57 J mol⁻¹ K⁻¹) were much less negative than values expected from the loss of one translational mode at the transition state $(-149 \text{ J mol}^{-1} \text{ K}^{-1})$, because weakly bound CH3 groups retain most of its translational freedom. The greater entropy losses as transition states evolve from $(O^* \cdots CH_3^{\bullet} \cdots *OH)^{\ddagger} (8b)$, to $(H_3C \cdots Pd \cdots$ H)[‡] (5b), and to $(H_3C^{\delta-}\cdots Pd_{ox}\cdots H^{\delta+}\cdots O_{ox})^{\frac{1}{2}}$ (11e) are offset by greater enthalpic stabilization, brought forth by stronger interactions between CH3 groups and Pd center, as depicted in Figure 15. The CH₃ moiety changes from an unbound state on O* covered Pd (8b), to three-center $(H_3C\cdots Pd\cdots H)^{\ddagger}$ interactions on uncovered Pd0 (5b), and ultimately to fourcenter $(H_3C^{\delta-}\cdots Pd_{ox}\cdots H^{\delta+}\cdots O_{ox})^{\ddagger}$ structures (11e) on PdO(101). The extents of interaction of the CH₃ and H moieties with the active sites, basicities of reactive oxygen atoms, and accessibility of Pd atoms to CH4 lead to mechanistically distinct C-H activation pathways of Habstraction, oxidative addition, and σ -bond metathesis. The diverse transition-state structures and wide variation in activation energies and entropies of these pathways lead in turn to the marked differences in CH₄-O₂ rates among the metal, O* covered metal, and oxide structures. # 4. CONCLUSIONS Rate measurements in kinetically controlled regimes and DFT calculations were used to describe the diverse reaction paths and their associated catalytic requirements for C–H bond activation in CH₄ on Pd clusters with varying chemical states and surface oxygen coverages. The C–H bond of CH₄ cleaves over metal site pairs (**-**), oxygen site pairs (O*-O**), or Pd and oxygen ion site pairs (Pd_{ox}-O_{ox}) prevalent on Pd⁰, oxygen-saturated Pd⁰, or PdO cluster surfaces via oxidation addition, homolytic H-abstraction, or σ bond metathesis pathways, respectively. The activation energies and entropies differ markedly among these mechanistically distinct paths, because of distinction in enthalpic stabilization between the CH₃ and H moieties and the catalytic sites (**, O**, Pd_{ox}, or O_{ox}) and the extent of charge transfer at the transition states, as confirmed here from interpreting the activation enthalpy using Born– Haber thermochemical cycle and Bader charge analysis along the reaction coordinate. Metal atom site-pairs prevalent on uncovered Pd⁰ clusters cleave the C-H bond by oxidative addition of one of the Pd atoms into the C-H bond, forming a three center transition state of (H₃C···Pd···H)[‡], before the transfer of H to another vicinal Pd site. Pd⁰ cluster surfaces saturated with dense layer of chemisorbed oxygen atoms lack an accessible Pd⁰ atom to interact with the CH₄ reactant and therefore cleave C-H bond homolytically using O*-O* sites via a H-abstraction step and the formation of free-radical-like methyl fragment in a high energy and entropy transition state $(O^* \cdots CH_3^{\bullet} \cdots *OH)^{\ddagger}$. In contrast, PdO clusters (predominantly PdO(101) surfaces) expose both stoichiometric Pdox and Oox ions that activate C-H bonds much more effectively than uncovered or O* saturated Pd⁰ clusters in a concerted oxidative addition and reductive deprotonation route involving a tight, four-center transition state $[(H_3C\cdots Pd_{ox}\cdots H\cdots O_{ox})^{\ddagger}].$ The relative stability of the various transition-state structures $(H_3C\cdots Pd\cdots H)^{\ddagger}$, $(O^*\cdots CH_3^{\bullet}\cdots *OH)^{\ddagger}$, and $(H_3C\cdots Pd_{ox}\cdots H\cdots H_{ox})^{\dagger}$ O_{ox})[‡] is interpreted in terms of the catalytic function of oxygen and Pd and of the extent of charge transfer. The reactivity of oxygen on Pd⁰ or PdO surfaces for H-abstraction is connected to their thermodynamic affinity toward the H. Lattice oxygen ions on PdO surfaces exhibit lower affinity toward H, interact more weakly with the H leaving group at the C-H activation transition state, and are therefore less effective for H-abstraction than the chemisorbed oxygen atoms on Pd⁰ cluster surfaces. Their lower reactivity toward H-abstraction is compensated by the involvement of vicinal Pd ions in stabilizing the methyl fragments and charge transfer between the CH₃ and H moieties and the PdO cluster surfaces at the transition state, which in combination significantly stabilize the transition state on PdO over those on O* saturated or uncovered Pd surfaces. These diverse C-H bond activation routes and the catalytic functions of metal and ligand resemble those reported for organometallic complexes in homogeneous reactions. The reactivity of ligand (oxygen), accessibility of metal to CH₄ reactant, and the chemical states of Pd (and O) dictate the stability, extent of charge transfer between surfaces and CH3 and H fragments, and charges at the C-H bond activation transition state. These differences in stabilities and charges influence the nature of C-H bond activation path and lead to distinct rates and kinetic parameters observed on bare Pd, O* saturated Pd, and PdO cluster surfaces. ## ASSOCIATED CONTENT # S Supporting Information Oxygen saturation coverages. Effects of O* binding strength on the C-H activation barrier for C-H bond activation on Pdoxygen atom (*-O*) site pairs on Pd(111) surfaces. This material is available free of charge via the Internet at http://pubs.acs.org. # AUTHOR INFORMATION ## **Corresponding Authors** iglesia@berkeley.edu mn4n@virginia.edu #### Notes The authors declare no competing financial interest. # ACKNOWLEDGMENTS This study was supported by BP as a part of the Methane Conversion Cooperative Research Program at the University of California at Berkeley and the University of Virginia. We
acknowledge access to the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy, Office of Biological and Environmental Research at the Pacific Northwest National Laboratory. The authors would also like thank Dr. Glenn Sunley (BP) and Professors Jay Labinger and John Bercaw (California Institute of Technology) for helpful discussions, Dr. Monica García-Diéguez (University of California at Berkeley) for technical insights throughout this study and for a thorough critical review of this manuscript, and Drs. David Hibbitts, Craig Plaisance, and Lijun Xu (University of Virginia) for helpful discussions on the issues of local charges. #### REFERENCES - (1) Zhu, G.; Han, J.; Zemlyanov, D. Y.; Ribeiro, F. J. Phys. Chem. B 2005, 109, 2331. - (2) Wang, H.; Iglesia, E. J. Catal. 2010, 273, 245. - (3) Hensen, E. J. M.; Vissenberg, M. J.; de Beer, V. H. J.; van Veen, J. A. R.; van Santen, R. A. *J. Catal.* **1996**, *163*, 429. - (4) Hummel, A. A.; Wilson, A. P.; Delgass, W. N. J. Catal. 1988, 113, 236. - (5) McCarty, J. G. Catal. Today 1995, 26, 283. - (6) Datye, A. K.; Bravo, J.; Nelson, T. R.; Atanasova, P.; Lyubovsky, M.; Pfefferle, L. *Appl. Catal., A* **2000**, *198*, 179. - (7) Farrauto, R. J.; Hobson, M. C.; Kennelly, T.; Waterman, E. M. Appl. Catal., A 1992, 81, 227. - (8) Chin Y.-H.; García-Diéguez, M.; Iglesia, E. J. Catal. in preparation. - (9) Chin, Y.-H.; Iglesia, E. J. Phys. Chem. C 2011, 115, 17845. - (10) Chin, Y.-H.; Buda, C.; Neurock, M.; Iglesia, E. J. Am. Chem. Soc. **2011**, 133, 15958. - (11) García-Diéguez, M.; Chin, Y.-H.; Iglesia, E. J. Catal. 2012, 285, 260. - (12) David, R. L. Handbook of Chemistry and Physics, 87th ed.; CRC Press: Boca Raton, FL, 2006. - (13) Koros, R. M.; Nowak, E. J. Chem. Engr. Sci. 1967, 22, 470. - (14) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. - (15) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. - (16) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. - (17) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. - (18) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. - (19) Methfessel, M.; Paxton, A. Phys. Rev. B 1989, 40, 3616. - (20) Kittel, C. Introduction to Solid State Physics, 6th ed.; J. Wiley and Sons, Inc.: New York, 1986. - (21) Zheng, G.; Altman, E. I. Surf. Sci. 2000, 462, 151. - (22) Rogal, J.; Reuter, K.; Scheffler, M. Phys. Rev. B 2004, 69, 075421. - (23) Waser, J.; Levy, H. A.; Peterson, S. W. Acta Crystallogr. 1953, 6, 661. - (24) Kan, H. H.; Colmyer, R. J.; Asthagiri, A.; Weaver, J. F. J. Phys. Chem. C 2009, 113, 1495. - (25) Mills, G.; Jonsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305. - (26) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. J. Chem. Phys. 2000, 113, 9901. - (27) Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978. - (28) Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008, 128, 134106. - (29) Bader, R. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1990; Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354. - (30) Stable CH₄ turnover rates were attained at extended reaction times (>80 ks) on both the metal and oxide clusters. Refer to ref 9 for - the effects of time-on-stream on first-order rate constants during CH₄ oxidation on Pd metal cluster surfaces. - (31) Chin, Y.-H.; Buda, C.; Neurock, M.; Iglesia, E. J. Catal. 2011, 283, 10. - (32) Yamaguchi, A.; Iglesia, E. J. Catal. 2010, 274, 52. - (33) van Santen, R. A.; Neurock, M.; Shetty, S. G. Chem. Rev. 2010, 110, 2005. - (34) Ciobîcă, I. M.; Frechard, F.; van Santen, R. A.; Kleyn, A. W.; Hafner, J. J. Phys. Chem. B 2000, 104, 3364. - (35) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. - (36) Cundari, T. R.; Grimes, T. V.; Gunnoe, T. B. J. Am. Chem. Soc. 2007, 129, 13172. - (37) Cundari, T. R. J. Am. Chem. Soc. 1994, 116, 340. - (38) Bunnik, B. S.; Kramer, G. J. J. Catal. 2006, 242, 309. - (39) Henkelman, G.; Jónsson, H. Phys. Rev. Lett. 2001, 86, 664. - (40) Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B.; Rostrup-Nielsen, J. R.; Chorkendorff, I.; Sehested, J.; Norskov, J. K. J. Catal. 2008, 259, 147. - (41) Biswas, B.; Sugimoto, M.; Sakaki, S. Organometallics 2000, 19, 3895-3908. - (42) Pallassana, V.; Neurock, M. J. Catal. 2000, 191 (2), 301. - (43) van Santen, R. A.; Neurock, M. Molecular Heterogeneous Catalysis: A Conceptual and Computational Approach; Wiley-VCH: Weinheim, Germany, 2006; p 107. - (44) Dai, G.-L.; Liu, Z.-P.; Wang, W.-N.; Lu, J.; Fan, K.-N. J. Phys. Chem. C 2008, 112, 3719. - (45) Rozanska, X.; Fortrie, R.; Sauer, J. J. Phys. Chem. C 2007, 111, 6041. - (46) Madix, R. J.; Roberts, J.T. The Problem of Heterogeneously Catalyzed Partial Oxidation: Model Studies on Single Crystal Surfaces. In *Surface Reactions*, Madix, R.J., Ed.; Springer-Verlag: Berlin, 1994. - (47) Ayre, C. R.; Madix, R. J. J. Am. Chem. Soc. 1995, 117, 2301. - (48) Hellman, A.; Resta, A.; Martin, N. M.; Gustafson, J.; Trinchero, A.; Carlsson, P.-A.; Balmes, O.; Felici, R.; van Rijn, R.; Frenken, J. W. M.; Andersen, J. N.; Lundgren, E.; Grönbeck, H. *Phys. Chem. Lett.* **2012**, *3*, 678. - (49) Mayernick, A. D.; Janik, M. J. J. Catal. 2011, 278, 16. - (50) Blanco-Rey, M.; Jenkins, S. J. J. Chem. Phys. 2009, 130, 014705. - (51) Weaver, J. F.; Hinojosa, J. A., Jr.; Hakanoglu, C.; Antony, A.; Hawkins, J. M.; Asthagiri, A. Catal. Today 2011, 160, 213. - (52) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 8731. - (53) Cummins, C. C.; Schaller, C. P.; Van Duyne, G. D.; Wolczanski, P. T.; Chan, A. W. E.; Hoffmann, R. *J. Am. Chem. Soc.* **1991**, *113*, 2985. - (54) Oxgaard, J.; Muller, R. P.; Goddard, W. A.; Periana, R. A. J. Am. Chem. Soc. **2004**, 126, 352. - (55) Cundari, T. R. Organometallics 1993, 12, 4971. - (56) Tanabe, K.; Yamaguchi, T. Catal. Today 1994, 20, 185. - (57) Tanabe, K. Appl. Catal. 1994, 113, 147.